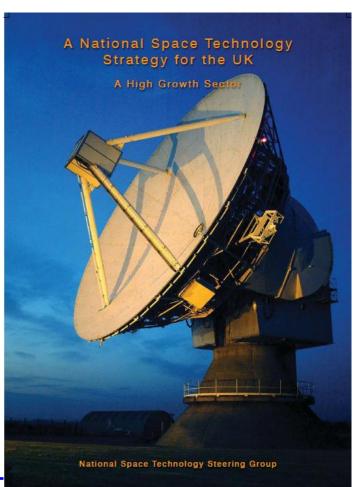


CEOI Projects - Collaborative Opportunities

Mick Johnson CEOI Director

23rd January 2013



- National Space Technology Strategy
- Space technology roadmaps
- Sensing technology database
- CEOI technologies
- Future opportunities

The National Space Technology Centre for Strategy

- Objectives for the Innovation and Growth Strategy
 - economic growth and stability;
 - creation of highly skilled jobs;
 - development of new knowledge and business opportunities;
 - generation of tangible revenue for the economy
- The IGS is aiming for 10% share of £400bn space market by 2030 currently £9bn per annum (6%)
- Recommends investment rising to £100m pa by government and industry
- Aims to span the public service and commercial markets, including climate monitoring and security services
- The National Space Technology Strategy is supported by sector roadmaps, developed by five National Technical Committees (NTCs)

Space Roadmap NTCs

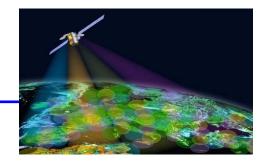
Telecomms

- Markets: Satellite broadband, enterprise, broadcast, transport, security and environment
- Technologies: Payloads, platforms, antennae, RF equipment

Sensing

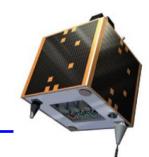
- Markets: Space science, EO science, meteorological, commercial
- Technologies: detectors, optics, radar, microwave etc

Robotics and Exploration


- Market: Significant spin-out into terrestrial market
- Technologies: Rovers, landers, penetrators, in-situ resources...

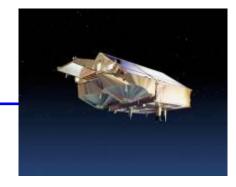
Position, Navigation and Timing

- Existing/planned GPS and Galileo space infrastructure
- Technologies centre on future services (location and timing eg in transport)


Access to Space

- Diverse set of markets and technologies to deliver payloads to space
- Includes launchers, platforms and enabling legislation

What is sensing?


 Definition: Sensing is the set of space and ground systems to allow generation of useful data, together with the exploitation of that data for scientific and commercial applications

• Scope includes:

- Active and passive sensing systems
- Space in-situ sensing
- Downstream activities, ground segments, applications
- Sensors to support space situational awareness

Outside scope:

- Rover and lander technologies, other than the sensing systems, are covered in 'Robotics and Exploration' roadmap
- Spacecraft/platform technologies are in 'Access to Space' roadmap

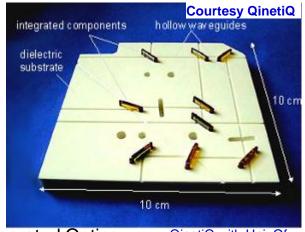
Sensing Roadmap Scope

Market characterised in 2009 IGS Report

- Space, planetary and EO science
- Monitoring the planet Environment and climate
- Commercial EO applications, Security and defence
- Products for export missions

Very wide range of capability identified:

- Detectors (visible, IR and microwave); Optical and microwave; active and passive systems; planetary in-situ
- Capability chart based on data from UK Space Directory

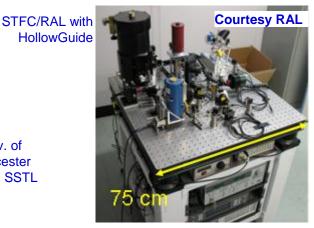

140-150 UK-based technology items identified and described

- Technologies categorised into 30 technology areas:
- Clustered into 10 sensing themes
- Includes products and technologies
 - E.g. Advanced UV/visible detectors, optics for Lidar, in-situ instruments

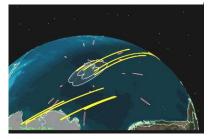
CEOI Technology Developments

LIDAR technologies in 1.5-2.5 μ m range for CO₂ measurement

Integrated Optics Hollow Waveguide

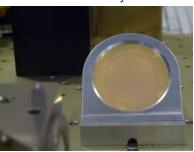

QinetiQ with Uni. Of Leicester and CTCD

Spectrometers and detectors in UV/Vis/NIR for atmospheric composition measurement Millimetre wave radiometric sounding of the atmosphere <u>STFC/RAL with Astrium and QUB</u>


SHIRM 360 GHz image separator mixer using Schottky diode technology

Laser heterodyne sounding in 4-150 µm range

GNSS Reflectometry



SSTL with NOCS, Univ. of Surrey & Bath, PolarImaging

University of Durham

Hyperspectral Image Microslicer

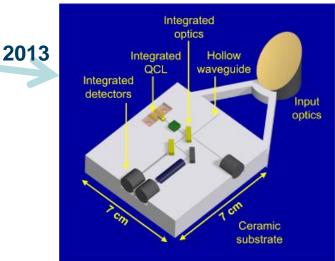
Frequency Selective Surface Filter

Queens University Belfast

Spinning in non-space technologies

1st bench top instrument 1x1 m²

Laser Heterodyne Radiometer


Monitoring emission and composition

Potential for Earth obs and planetary missions

Monitoring urban areas

Hollow waveguides

Integrated instrument concept - 7x7 cm

STFC-RAL with HollowGuide Ltd

Miniature integrated instrument

- Using hollow waveguides (spin-in from aerospace) in an existing instrument concept
- Leads to smaller more robust instrument with lower cost and improved performance

License or Collaborate

Potential technology areas available for licensing or for collaborative development include:

Technology Theme	Capabilities
Infra-red	IR detectors, spectrometers and optics technologies
LIDAR	Beam scanners, optics, system development, laser sources
Passive Microwave	Detectors, instruments, quasi-optics
Radar	SAR/Radar front end and back end
UV/VIS	Advanced high res spectrometers, UV/VIS detectors, imaging and optical technologies
X-Ray/Gamma	Instruments, neutron optics, detector technologies

Collaborate or Supply

Technology Theme	Development Areas	Advances Needed
Infra-red	Advanced IR detectors	Low noise
	Imaging array detectors	Low light level detection
	Laser sources	Power scaling
	MCT arrays & optical	Efficiency enhancement
	technologies	Lenseless imaging
LIDAR	Laser Sources	Multi-spectral laser sources
	Optics for Lidar	Wave Guides
	Detectors	Improved spectra, temporal, horizontal, vertical
		resolution
Passive Microwave	Passive microwave	Higher pixel numbers
	technologies	Higher sensitivity
	Passive microwave	Steerable antennas
	instruments	High gain antennas and electronics
Radar	SAR/Radar front end	Multi deployable antennas/structure
	SAR/Radar RF and back	High data rates
	end	Reconfigurable electronics
		Operability at different SAR bands
UV/VIS	Advanced UV/VIS	Resolution
	detectors	Radiation hardness
		Spectral resolution
		Low noise
	Optical technologies	Active functionality
		Surface finish

How to engage

- Networking opportunities
- Enquiry sheets
- Contact details

Mick Johnson	J
CEOI Director	
+44 (0)1438 774421	
mick.johnson@astrium.eads.net	

Jane Leeks CEOI KE Co-ordinator +44 (0)1223-422416 jane.leeks@qi3.co.uk

Today and afterwards